81. Search in Rotated Sorted Array II
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,0,1,2,2,5,6]
might become [2,5,6,0,0,1,2]
).
You are given a target value to search. If found in the array return true
, otherwise return false
.
Example 1:
Input: nums = [2,5,6,0,0,1,2]
, target = 0
Output: true
Example 2:
Input: nums = [2,5,6,0,0,1,2]
, target = 3
Output: false
Follow up:
- This is a follow up problem to Search in Rotated Sorted Array, where
nums
may contain duplicates. - Would this affect the run-time complexity? How and why?
这一题在LeetCode Search in Rotated Sorted Array的基础上,增加了数组有重复元素的约束,其实相当于LeetCode Search in Rotated Sorted Array和LeetCode Find Minimum in Rotated Sorted Array II的结合,搜索框架采用前者(即先找到有序的半个部分,再决定丢弃哪半个部分),边界判断采用后者(即遇到中间和边缘相等时,移动边缘)。代码上只是在前者代码的基础上增加了一个else分支。完整代码如下:
class Solution {
public:
bool search(vector<int>& nums, int target)
{
int l = 0, r = nums.size() – 1;
while (l <= r) {
int mid = (l + r) / 2;
if (nums[mid] == target)
return true;
if (nums[mid] < nums[r]) {
if (target > nums[mid] && target <= nums[r]) {
l = mid + 1;
}
else {
r = mid – 1;
}
}
else if (nums[mid] > nums[r]) {
if (target >= nums[l] && target < nums[mid]) {
r = mid – 1;
}
else {
l = mid + 1;
}
}
else {
–r;
}
}
return false;
}
};
本代码提交AC,用时12MS。因为多了一个else分支,算法最坏情况下,会达到O(n)的复杂度。
二刷。思路相同,使用递归实现,代码如下:
class Solution {
public:
bool SearchRange(vector<int>& nums, int l, int r, int target) {
if (l > r)return false;
if (l == r)return nums[l] == target;
int mid = l + (r - l) / 2;
if (nums[mid] == target)return true;
if (nums[l] < nums[mid]){
if (target >= nums[l] && target < nums[mid])return SearchRange(nums, l, mid - 1, target);
else return SearchRange(nums, mid + 1, r, target);
}
else if (nums[l] > nums[mid]) {
if (target > nums[mid] && target <= nums[r])return SearchRange(nums, mid + 1, r, target);
else return SearchRange(nums, l, mid - 1, target);
}
else {
++l;
return SearchRange(nums, l, r, target);
}
}
bool search(vector<int>& nums, int target) {
return SearchRange(nums, 0, nums.size() - 1, target);
}
};
本代码提交AC,用时4MS。