LeetCode Rotate Function
Given an array of integers A
and let n to be its length.
Assume Bk
to be an array obtained by rotating the array A
k positions clock-wise, we define a “rotation function” F
on A
as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
.
Calculate the maximum value of F(0), F(1), ..., F(n-1)
.
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
给定一个数组A,和函数F(k),其中F(k) = 0 * Bk[0] + 1 * Bk[1] + … + (n-1) * Bk[n-1],数组B为数组A顺时针旋转k次后的新数组。要求所有F(k)的最大值。 仔细观察样例,会发现$$F(k)=\sum_{i=0}^{n-1}((k+i)\%n)*a_i$$。于是可以算出所有的F(k),然后求最大值。代码如下: [cpp] class Solution { public: int maxRotateFunction(vector<int>& A) { if (A.empty())return 0; int ans = INT_MIN, n = A.size(); for (int k = 0; k < n; ++k) { int cur = 0; for (int i = 0; i < n; ++i) { cur += ((k + i) % n)*A[i]; } ans = max(ans, cur); } return ans; } }; [/cpp] 本代码提交TLE,复杂度是O(kn),遇到大数据时超时了。 如果再仔细研究一下样例,会发现一个更优的递推公式:$$F(k)=F(k-1)+sum-n*A[n-k]$$。这样直接根据前一项F(k-1),可以在O(1)时间算出下一项F(k)。总的时间复杂度只有O(n)。代码如下: [cpp] class Solution { public: int maxRotateFunction(vector<int>& A) { if (A.empty())return 0; int n = A.size(), sum = 0, f0 = 0; for (int i = 0; i < n; ++i) { sum += A[i]; f0 += i*A[i]; } int ans = f0, pre = f0; for (int i = 1; i < n; ++i) { int cur = pre + sum – n * A[n – i]; ans = max(ans, cur); pre = cur; } return ans; } }; [/cpp] 本代码提交AC,用时16MS。]]>