You are given the array paths
, where paths[i] = [cityAi, cityBi]
means there exists a direct path going from cityAi
to cityBi
. Return the destination city, that is, the city without any path outgoing to another city.
It is guaranteed that the graph of paths forms a line without any loop, therefore, there will be exactly one destination city.
Example 1:
Input: paths = [["London","New York"],["New York","Lima"],["Lima","Sao Paulo"]] Output: "Sao Paulo" Explanation: Starting at "London" city you will reach "Sao Paulo" city which is the destination city. Your trip consist of: "London" -> "New York" -> "Lima" -> "Sao Paulo".
Example 2:
Input: paths = [["B","C"],["D","B"],["C","A"]] Output: "A" Explanation: All possible trips are: "D" -> "B" -> "C" -> "A". "B" -> "C" -> "A". "C" -> "A". "A". Clearly the destination city is "A".
Example 3:
Input: paths = [["A","Z"]] Output: "Z"
Constraints:
1 <= paths.length <= 100
paths[i].length == 2
1 <= cityAi.length, cityBi.length <= 10
cityAi != cityBi
- All strings consist of lowercase and uppercase English letters and the space character.
给定一个路径数组,每条路径标明了出发城市和到达城市,问所有路径最终会到达哪个城市,最终到达的城市是只有进路,没有出路的城市。
简单题,统计下所有城市的入度和出度,出度为0的城市即为最终城市。
class Solution {
public:
string destCity(vector<vector<string>>& paths) {
map<string, pair<int,int>> count;
for (int i = 0; i < paths.size(); ++i) {
string src = paths[i][0], dest = paths[i][1];
++count[src].first; // 出度
++count[dest].second; // 入度
}
for (map<string, pair<int, int>>::iterator it = count.begin(); it != count.end(); ++it) {
if (it->second.first == 0) {
return it->first;
}
}
return "";
}
};
本代码提交AC,用时56MS。