A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
Constraints:
1 <= m, n <= 100
- It’s guaranteed that the answer will be less than or equal to
2 * 10 ^ 9
.
问从左上角走到右下角一共有多少种方案,每次只能往右或者下走。很简单的题,高中学过排列组合的都知道。 假设右下和左上的坐标之差为(x,y),则从左上走到右下一共需要走x+y步,可以分为x步往右走,y步往下走。每一步都可以选择往右或者往下走,所以总的方案数为$C_{x+y}^x==C_{x+y}^y$,用x,y中的较小者来算就可以了,计算方法就是高中数学老师教的啦:-) 完整代码如下
class Solution {
public:
int uniquePaths(int m, int n)
{
int x = m – 1, y = n – 1;
int z = x + y, u = x < y ? x : y;
double ans = 1.0;
for (int i = 1; i <= u; i++) {
ans *= z;
ans /= i;
z–;
}
return ans;
}
};
本代码提交AC,用时0MS。
Pingback: LeetCode Unique Paths II | bitJoy > code