LeetCode Number of Boomerangs
Given n points in the plane that are all pairwise distinct, a “boomerang” is a tuple of points (i, j, k)
such that the distance between i
and j
equals the distance between i
and k
(the order of the tuple matters).
Find the number of boomerangs. You may assume that n will be at most 500 and coordinates of points are all in the range [-10000, 10000] (inclusive).
Example:
Input: [[0,0],[1,0],[2,0]] Output: 2 Explanation: The two boomerangs are [[1,0],[0,0],[2,0]] and [[1,0],[2,0],[0,0]]
给定一堆点集,问回飞镖的个数。一个回飞镖是一个三点集(i,j,k),且满足i到j和k的距离相等。 如果和i距离相等的点有n个,则这样的三点集有$$A_n^2=n(n-1)$$,也就是从n个点中拿两个点做排列。所以问题就转换为对每个点,都求其他所有点和该点的距离,求到距离相等的点的个数n,然后代入公式计算。 代码如下: [cpp] class Solution { public: int numberOfBoomerangs(vector<pair<int, int>>& points) { int ans = 0; for (int i = 0; i < points.size(); ++i) { unordered_map<int, int> dist_cnt; for (int j = 0; j < points.size(); ++j) { int xdiff = points[i].first – points[j].first; int ydiff = points[i].second – points[j].second; ++dist_cnt[xdiff*xdiff + ydiff*ydiff]; } for (auto it = dist_cnt.begin(); it != dist_cnt.end(); ++it)ans += it->second*(it->second – 1); } return ans; } }; [/cpp] 本代码提交AC,用时369MS。 因为题中说到所有点都是不相同的,所以第7行没必要限制j!=i,即使j==i,算出来的距离是0,dist_cnt[0]=1,也就是只有点x一个点和自己的距离是0。到第12行计算排列数时,n(n-1)=0,所以没关系。]]>