Tag Archives: 线段树

LeetCode Range Sum Query – Mutable

LeetCode Range Sum Query – Mutable Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive. The update(i, val) function modifies nums by updating the element at index i to val. Example:

Given nums = [1, 3, 5]
sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8
Note:
  1. The array is only modifiable by the update function.
  2. You may assume the number of calls to update and sumRange function is distributed evenly.

给定一个一维数组,要求实现范围求和,即求[i,j]之间的元素的和。sumRange(i,j)求i~j的元素和,update(i,val)更新下标为i的元素值为val。 第一敏感使用线段树,很久之前在hihoCoder上遇到过。 建树的方法是类似于树的后序遍历,即左右根。不断把[start,end]二分,构建左右子树,然后构建当前节点,当前节点的sum等于左右子树的sum的和。在递归的时候,递归到start==end时,说明只有一个元素了,此时sum就等于该元素。 查询的方法和建树方法类似,判断区间[i,j]和区间[start,end]的关系,假设start和end的中点是mid,如果j<=mid,递归在左子树查询;如果i>mid,递归在右子树查询;否则在[i,mid]和[mid+1,j]查询然后求和。 更新的方法和查询的方法类似,也是不断判断i和mid的关系,在左子树或者右子树递归更新,当找到该叶子节点时,更新它的sum,返回父节点也更新sum等于新的左右子树的sum的和。 完整代码如下: [cpp] class NumArray { private: struct Node { int start, end, sum; Node *left, *right; Node(int s, int e) :start(s), end(e), sum(0), left(NULL), right(NULL) {}; }; Node *root; Node* constructTree(vector<int> &nums, int start, int end) { Node* node = new Node(start, end); if (start == end) { node->sum = nums[start]; return node; } int mid = start + (end – start) / 2; node->left = constructTree(nums, start, mid); node->right = constructTree(nums, mid + 1, end); node->sum = node->left->sum + node->right->sum; return node; } int sumRange(int i, int j, Node *root) { if (root == NULL)return 0; if (i == root->start&&j == root->end)return root->sum; int mid = root->start + (root->end – root->start) / 2; if (j <= mid)return sumRange(i, j, root->left); else if (i > mid)return sumRange(i, j, root->right); else return sumRange(i, mid, root->left) + sumRange(mid + 1, j, root->right); } void update(int i, int val, Node *root) { if (root->start == root->end && root->start == i) { root->sum = val; return; } int mid = root->start + (root->end – root->start) / 2; if (i <= mid)update(i, val, root->left); else update(i, val, root->right); root->sum = root->left->sum + root->right->sum; } public: NumArray(vector<int> nums) { root = NULL; if (!nums.empty())root = constructTree(nums, 0, nums.size() – 1); } void update(int i, int val) { if (root == NULL)return; update(i, val, root); } int sumRange(int i, int j) { if (root == NULL)return 0; return sumRange(i, j, root); } }; [/cpp] 本代码提交AC,用时172MS。]]>

hihoCoder 1077-RMQ问题再临-线段树

hihoCoder 1077-RMQ问题再临-线段树 #1077 : RMQ问题再临-线段树 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到:小Hi给小Ho出了这样一道问题:假设整个货架上从左到右摆放了N种商品,并且依次标号为1到N,每次小Hi都给出一段区间[L, R],小Ho要做的是选出标号在这个区间内的所有商品重量最轻的一种,并且告诉小Hi这个商品的重量。但是在这个过程中,可能会因为其他人的各种行为,对某些位置上的商品的重量产生改变(如更换了其他种类的商品)。 小Ho提出了两种非常简单的方法,但是都不能完美的解决。那么这一次,面对更大的数据规模,小Ho将如何是好呢? 提示:其实只是比ST少计算了一些区间而已 输入 每个测试点(输入文件)有且仅有一组测试数据。 每组测试数据的第1行为一个整数N,意义如前文所述。 每组测试数据的第2行为N个整数,分别描述每种商品的重量,其中第i个整数表示标号为i的商品的重量weight_i。 每组测试数据的第3行为一个整数Q,表示小Hi总共询问的次数与商品的重量被更改的次数之和。 每组测试数据的第N+4~N+Q+3行,每行分别描述一次操作,每行的开头均为一个属于0或1的数字,分别表示该行描述一个询问和描述一次商品的重量的更改两种情况。对于第N+i+3行,如果该行描述一个询问,则接下来为两个整数Li, Ri,表示小Hi询问的一个区间[Li, Ri];如果该行描述一次商品的重量的更改,则接下来为两个整数Pi,Wi,表示位置编号为Pi的商品的重量变更为Wi 对于100%的数据,满足N<=10^6,Q<=10^6, 1<=Li<=Ri<=N,1<=Pi<=N, 0<weight_i, Wi<=10^4。 输出 对于每组测试数据,对于每个小Hi的询问,按照在输入中出现的顺序,各输出一行,表示查询的结果:标号在区间[Li, Ri]中的所有商品中重量最轻的商品的重量。 样例输入 10 3655 5246 8991 5933 7474 7603 6098 6654 2414 884 6 0 4 9 0 2 10 1 4 7009 0 5 6 1 3 7949 1 3 1227 样例输出 2414 884 7474


这一题是hihoCoder Problem 1070:RMQ问题再临的升级版,数据量提升到10^6,但提示还是用线段树来解决。我原本以为只要把之前的数组大小改为10^6就行了,没想到这次居然给我报CE错。 第一次遇到这种错误,看了半天没明白什么意思,后来多方查找才得知可能是数组太大了,直接编译就不通过,想想看10^6的二维数组:10^6*10^6=10^12,装的是int,则总大小为4*10^12B=3725G,这明显大大超出了内存范围,而之前的10^4二维数组只有4*10^8B=381M,按理说也超出了题目的256MB,不过还是险些AC了,但是这一次就没这么好运了,所以必须优化算法! 怎样优化内存空间呢?先把我们的线段树请出来看看: 上图是线段树的一个例子,每个节点保存了区间范围以及该区间的最小值。总的区间大小是[1,10],仔细看看这个区间树的节点个数只有19个;另外再画一个[1,6]区间上的区间树,节点个数只有11个。可以不加证明的得出一个n的区间长度的线段树的节点个数为2*n-1,这远远小于n*n,所以我们只需要O(n)的空间来存储,而不是O(n^2)。 反观之前hihoCoder Problem 1070:RMQ问题再临的解法,其实没有构造一个真正的线段树,所以浪费了很多空间,那么怎样来构造一个真正的线段树呢? 我们知道常规的树形结构是用链表来实现的,每一个节点都有指向其左右孩子节点的指针,这样就可以很容易的访问孩子节点,如果用数组的结构来表示链表的结果,是不是会简单很多呢?于是我们定义如下树的节点结构: [cpp] typedef struct node//线段树节点 { int l;//区间左端点 int r;//区间右端点 int minv;//区间最小值 }; [/cpp] 再定义一个表示树的数组node tree[2*MAX_N];很自然的tree[i]的左右孩子节点分别存储在tree[2i]和tree[2i+1],这样是不是也很容易访问孩子节点了呢。 不论是创建、查询、更新树,都是从树根开始递归往下,这个过程和之前的那个题目类似,这里就不再赘述了。完整的代码如下: [cpp] #include<iostream> #include<cstdio> using namespace std; const int MAX_N=1e6+2; int w[MAX_N]; int n,q; typedef struct node//线段树节点 { int l;//区间左端点 int r;//区间右端点 int minv;//区间最小值 }; node tree[2*MAX_N]; inline int get_min(int a,int b) { return a<b?a:b; } //创建树 void build(int l,int r,int pos) { tree[pos].l=l; tree[pos].r=r; if(l==r) tree[pos].minv=w[l]; else { int mid=(l+r)/2; build(l,mid,pos*2); build(mid+1,r,pos*2+1); tree[pos].minv=get_min(tree[pos*2].minv,tree[pos*2+1].minv); } } //查询树 int query(int l,int r,int pos) { if(l==tree[pos].l&&r==tree[pos].r) return tree[pos].minv; int mid=(tree[pos].l+tree[pos].r)/2; if(r<=mid) return query(l,r,pos*2); else if(l>mid) return query(l,r,pos*2+1); else { int left=query(l,mid,pos*2); int right=query(mid+1,r,pos*2+1); return get_min(left,right); } } //更新树 void update(int pi,int wi,int pos) { if(tree[pos].l==tree[pos].r&&tree[pos].l==pi) tree[pos].minv=wi; else { int mid=(tree[pos].l+tree[pos].r)/2; if(pi<=mid) update(pi,wi,pos*2); else update(pi,wi,pos*2+1); tree[pos].minv=get_min(tree[pos*2].minv,tree[pos*2+1].minv); } } int main() { //freopen("input.txt","r",stdin); scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&w[i]); build(1,n,1); scanf("%d",&q); int p,l,r; for(int i=0;i<q;i++) { scanf("%d%d%d",&p,&l,&r); if(p==0) printf("%d\n",query(l,r,1)); else update(l,r,1); } return 0; } [/cpp] 本代码提交AC,用时697MS,内存45MB。 P.S.之前用cin、cout超时,改成scanf、printf就好了,懒得取消同步什么的,以后就打算一直用scanf、printf了。唉,从上一题到这一题,优化是无止境的啊~~]]>

hihoCoder 1070-RMQ问题再临

hihoCoder 1070-RMQ问题再临 #1070 : RMQ问题再临 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 终于,小Hi和小Ho踏上了回国的旅程。在飞机上,望着采购来的特产——小Hi陷入了沉思:还记得在上上周他们去超市的时候,前前后后挑了那么多的东西,都幸运的没有任何其他人(售货员/其他顾客)来打搅他们的采购过程。但是如果发生了这样的事情,他们的采购又会变得如何呢? 于是小Hi便向小Ho提出了这个问题:假设整个货架上从左到右摆放了N种商品,并且依次标号为1到N,每次小Hi都给出一段区间[L, R],小Ho要做的是选出标号在这个区间内的所有商品重量最轻的一种,并且告诉小Hi这个商品的重量。但是在这个过程中,可能会因为其他人的各种行为,对某些位置上的商品的重量产生改变(如更换了其他种类的商品),面对这样一个问题,小Ho又该如何解决呢? 提示:平衡乃和谐之理 输入 每个测试点(输入文件)有且仅有一组测试数据。 每组测试数据的第1行为一个整数N,意义如前文所述。 每组测试数据的第2行为N个整数,分别描述每种商品的重量,其中第i个整数表示标号为i的商品的重量weight_i。 每组测试数据的第3行为一个整数Q,表示小Hi总共询问的次数与商品的重量被更改的次数之和。 每组测试数据的第N+4~N+Q+3行,每行分别描述一次操作,每行的开头均为一个属于0或1的数字,分别表示该行描述一个询问和描述一次商品的重量的更改两种情况。对于第N+i+3行,如果该行描述一个询问,则接下来为两个整数Li, Ri,表示小Hi询问的一个区间[Li, Ri];如果该行描述一次商品的重量的更改,则接下来为两个整数Pi,Wi,表示位置编号为Pi的商品的重量变更为Wi 对于100%的数据,满足N<=10^4,Q<=10^4, 1<=Li<=Ri<=N,1<=Pi<=N, 0<weight_i, Wi<=10^4。 输出 对于每组测试数据,对于每个小Hi的询问,按照在输入中出现的顺序,各输出一行,表示查询的结果:标号在区间[Li, Ri]中的所有商品中重量最轻的商品的重量。 样例输入 10 618 5122 1923 8934 2518 6024 5406 1020 8291 2647 6 0 3 6 1 2 2009 0 2 2 0 2 10 1 1 5284 0 2 5 样例输出 1923 2009 1020 1923


本题的数据量比hihoCoder Problem 1068: RMQ-ST 算法这题要小,虽然
用O(N)的时间进行计算——扫描一遍整个区间找到最小值,然后对于每一个更改操作,使用O(1)的时间直接进行修改,这样也就是O(NQ)的总时间复杂度!在这种数据量下完全是可以通过的!
但是本题希望我们用线段树来解决。 我曾在《数据结构》的改造红黑树中看到过区间树,但是本题的线段树和书中的区间树有所区别,区间树由红黑树改造而来,结构更复杂些,这里只需要使用线段树即可。 常规的线段树如下图所示: 从图中可以看到构造线段树的过程就是一个二分的过程,不断将区间分成两半,直到只有一个元素。图中的线段树每一个节点是一个区间[l,r],本题我稍微改造了一下,改成了数组int seg_tree[left][length],比如seg_tree[i][j]表示从下标i开始,长度为j的这样一个区间上的最小值,这样就可以利用线段树来解决RMQ问题了。比如改造后的线段树就成了下面的样子: 因为树形这种特殊的结构,我们可以用一个DFS来对树实现二分构造,当DFS到某个节点长度为1时,其最小值就是w[i]本身,在回溯到父节点时,父节那个区间的最小值又是所有子节点最小值中的最小值。因为树的总节点数大约为2*n,所以复杂度O(n)。 当需要查询区间[l,r]的最小值时,只需对数组seg_tree二分搜索。具体来说,假设我们搜索到了节点[s_l,s_len],如果r<(s_l+s_len/2),说明区间[l,r]全在[s_l,s_len]的左边,我们递归在[s_l,s_len/2]区间找;如果l>=(s_l+s_len/2),说明区间[l,r]全在[s_l,s_len]的右边,我们递归在[s_l+s_len/2,s_len-s_len/2]区间找;如果以上两者都不是,说明[l,r]跨界了,而且中点下标一定是s_l+s_len/2,所以我们分别在二两半区间找,然后求这两者的最小值。复杂度O(lgn)。 当需要更新某个下标为pos的值为value时,也是DFS查找线段树,直到找到叶子seg_tree[pos][1],更新它的值,以及所有我们在查找过程经过的父节点的值。复杂度O(lgn)。 所以线段是的性质使得无论是构造、查询、更新操作,复杂度都只要O(lgn),这就是题目中所说的把总的复杂度平均分配到不同操作:平衡乃和谐之理。 完整代码如下: [cpp] #include<iostream> using namespace std; const int MAX_N=1e4+2; int w[MAX_N];//每个商品重量 int n,m; int seg_tree[MAX_N][MAX_N];//seg_tree[i][j]:起点为i,长度为j的区间的最小值 inline int get_min(int a,int b) { return a<b?a:b; } //深度优先遍历以构造线段树 void dfs(int left,int length) { if(length==1) { seg_tree[left][1]=w[left]; return; } dfs(left,length/2); dfs(left+length/2,length-length/2); seg_tree[left][length]=get_min(seg_tree[left][length/2],seg_tree[left+length/2][length-length/2]);//取最小值 } //在区间[s_left,s_len]搜索区间[left,length]的最小值 int search_min(int s_left,int s_len,int left,int length) { if((s_left==left)&&(s_len==length)) return seg_tree[s_left][s_len]; if((left+length-1)<(s_left+s_len/2))//全在左半部分 { return search_min(s_left,s_len/2,left,length); } else if(left>=(s_left+s_len/2))//全在右半部分 { return search_min(s_left+s_len/2,s_len-s_len/2,left,length); } else//左右分开搜索 { int left_len=s_left+s_len/2-left; int right_len=length-left_len; int min_left=search_min(s_left,s_len/2,left,left_len); int min_right=search_min(s_left+s_len/2,s_len-s_len/2,s_left+s_len/2,right_len); return get_min(min_left,min_right); } } //从区间[s_left,s_len]开始更新下标pos的值为value void update(int s_left,int s_len,int pos,int value) { if((s_left==pos)&&(s_len==1)) { seg_tree[s_left][1]=value; return ; } int mid=s_left+s_len/2; if(pos<mid) update(s_left,s_len/2,pos,value); else update(mid,s_len-s_len/2,pos,value); seg_tree[s_left][s_len]=get_min(seg_tree[s_left][s_len/2],seg_tree[mid][s_len-s_len/2]);//更新父节点 } int main() { //freopen("input.txt","r",stdin); cin>>n; for(int i=1;i<=n;i++) cin>>w[i]; dfs(1,n); cin>>m; int p,l,r; for(int i=0;i<m;i++) { cin>>p>>l>>r; if(p==0)//查询 { cout<<search_min(1,n,l,r-l+1)<<endl; } else//修改 { update(1,n,l,r); } } return 0; } [/cpp] 本代码提交AC,用时151MS,内存42MB。 ]]>