LeetCode Maximum Subarray

53. Maximum Subarray

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.


求最大连续子数组和,这是一道非常经典的题目,从本科时候就开始做了。有两种解法。

动态规划法

用dp数组存储到当前元素的最大子数组和,如dp[i-1]表示包含第i-1个元素的最大子数组和,则dp[i]表示包含第i个元素的最大子数组和。如果dp[i-1]>0,则dp[i]=dp[i-1]+nums[i];否则dp[i]=nums[i]。完整代码如下:

class Solution {
public:
    int maxSubArray(vector<int>& nums)
    {
        vector<int> dp(nums.size(), 0);
        dp[0] = nums[0];
        int ans = nums[0];
        for (int i = 1; i < nums.size(); i++) {
            if (dp[i – 1] > 0)
                dp[i] = dp[i – 1] + nums[i];
            else
                dp[i] = nums[i];
            if (dp[i] > ans)
                ans = dp[i];
        }
        return ans;
    }
};

本代码只用扫描一遍数组,所以时间复杂度为$O(n)$。本代码提交AC,用时12MS。

分治法

将数组一分为二,比如数组[a,b]分为[a,m-1]和[m+1,b],递归求解[a,m-1]和[m+1,b]的最大连续子数组和lmax和rmax,但是[a,b]的最大连续子数组和还可能是跨过中点m的,所以还应该从m往前和往后求一个包含m的最大连续子数组和mmax,然后再求lmax,rmax,mmax的最大值。完整代码如下:

class Solution {
public:
    int divide(vector<int>& nums, int left, int right)
    {
        if (left == right)
            return nums[left];
        if (left == right – 1)
            return max(nums[left] + nums[right], max(nums[left], nums[right]));
        int mid = (left + right) / 2;
        int lmax = divide(nums, left, mid – 1);
        int rmax = divide(nums, mid + 1, right);
        int mmax = nums[mid], tmp = nums[mid];
        for (int i = mid – 1; i >= left; i–) {
            tmp += nums[i];
            if (tmp > mmax)
                mmax = tmp;
        }
        tmp = mmax;
        for (int i = mid + 1; i <= right; i++) {
            tmp += nums[i];
            if (tmp > mmax)
                mmax = tmp;
        }
        return max(mmax, max(lmax, rmax));
    }
    int maxSubArray(vector<int>& nums) { return divide(nums, 0, nums.size() – 1); }
};

本代码可以类比平面上求最近点对的例子,需要考虑跨界的问题,时间复杂度为$O(nlgn)$。本代码提交AC,用时也是12MS。

综合来看,还是动态规划法更漂亮。

二刷。动态规划还可以再简化,即不用额外的DP数组,代码如下:

class Solution {
public:
	int maxSubArray(vector<int>& nums) {
		int n = nums.size();
		int max_sum = INT_MIN, cur_sum = 0;
		for (int i = 0; i < n; ++i) {
			if (cur_sum >= 0) {
				cur_sum += nums[i];
			}
			else {
				cur_sum = nums[i];
			}
			max_sum = max(max_sum, cur_sum);
		}
		return max_sum;
	}
};

本代码提交AC,用时4MS,击败98%用户。

2 thoughts on “LeetCode Maximum Subarray

  1. Pingback: LeetCode Maximum Product Subarray | bitJoy > code

  2. Pingback: LeetCode Maximum Sum Circular Subarray | bitJoy > code

Leave a Reply

Your email address will not be published. Required fields are marked *