You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2 Output: 2 Explanation: There are two ways to climb to the top. 1. 1 step + 1 step 2. 2 steps
Example 2:
Input: 3 Output: 3 Explanation: There are three ways to climb to the top. 1. 1 step + 1 step + 1 step 2. 1 step + 2 steps 3. 2 steps + 1 step
虽然是easy模式,但是是很好的一道题。问爬一个有n个台阶的楼梯,每次只能跨1步或者2步,共有多少种方案。 使用DP解决,假设前n个台阶共有dp[n]种方案,来了一个新台阶第n+1个台阶,那么这个台阶可以单独1步跨,则方案数为dp[n];也可以和第n个台阶合在一起一次性跨2步,则还剩n-1个台阶,所以方案数为dp[n-1]。综合起来就是dp[n+1]=dp[n]+dp[n-1],这其实就是斐波那契数列。
求斐波那契数列的第n项是一个经典问题,如果使用原始的递归求解,则会有很多重复计算,导致超时:
class Solution {
public:
int climbStairs(int n)
{
if (n == 1)
return 1;
if (n == 2)
return 2;
return climbStairs(n – 1) + climbStairs(n – 2);
}
};
但是每次我们只需要前两项的数值,所以可以优化为:
class Solution {
public:
int climbStairs(int n)
{
if (n == 1)
return 1;
if (n == 2)
return 2;
int a1 = 1, a2 = 2, tmp;
for (int i = 3; i <= n; i++) {
tmp = a1 + a2;
swap(a1, a2);
swap(a2, tmp);
}
return a2;
}
};
本代码提交AC,用时0MS。