LeetCode Palindrome Partitioning

131. Palindrome Partitioning


Given a string s, partition s such that every substring of the partition is a palindrome.

Return all possible palindrome partitioning of s.

Example:

Input: "aab"
Output:
[
  ["aa","b"],
  ["a","a","b"]
]

本题要求把字符串s分割成若干个子串,使得每个子串都是回文串。如果有多种分割方法,输出所有的分割方案。 很有意思的一道题。我是这样做的:首先用DP求出任意一个子串s[i,…,j]是否为回文串,这就相当于知道了s中哪几个位置可以切割;然后就在s中DFS每个割点,求出所有的分割方案。
DP求s[i,…,j]是否为回文串的过程是这样的,如果s[i]==s[j],且dp[i+1][j-1]也是回文串,则dp[i][j]也是回文串。所以我们需要先求到长度比较短的s[i+1,j-1]是否为回文串,然后再求长度更长的是否为回文串。所以在helper函数的外层循环是子串的长度。

求到了任意一个子串是否为回文串之后,DFS每个割点就好了,这个和枚举排列情况很类似,就不再赘述了。完整代码如下:

class Solution {
private:
    void helper(const string& s, vector<vector<int> >& dp)
    {
        int n = s.size();
        for (int i = 0; i < n; ++i)
            dp[i][i] = 1; // 单个字符自身就是回文串
        for (int len = 2; len <= n; ++len) {
            for (int i = 0; i + len – 1 < n; ++i) {
                if (s[i] == s[i + len – 1] && ((i + 1 <= i + len – 2 && dp[i + 1][i + len – 2] == 1) || i + 1 > i + len – 2)) {
                    dp[i][i + len – 1] = 1;
                }
            }
        }
    }
    void dfs(const string& s, vector<vector<int> >& dp, vector<vector<string> >& ans, vector<string>& cand, int idx)
    {
        if (idx == s.size()) {
            ans.push_back(cand);
            return;
        }
        for (int i = idx; i < s.size(); ++i) {
            if (dp[idx][i] == 1) {
                cand.push_back(s.substr(idx, i – idx + 1));
                dfs(s, dp, ans, cand, i + 1);
                cand.pop_back();
            }
        }
    }
public:
    vector<vector<string> > partition(string s)
    {
        int n = s.size();
        vector<vector<int> > dp(n, vector<int>(n, 0));
        helper(s, dp);
        vector<vector<string> > ans;
        vector<string> cand;
        dfs(s, dp, ans, cand, 0);
        return ans;
    }
};

本代码提交AC,用时6MS。

二刷。不用DP提前判断,而是每次都暴力判断是否为回文:

class Solution {
public:
	bool IsPal(const string &s, int l, int r) {
		if (l > r)return false;
		if (l == r)return true;
		while (l < r) {
			if (s[l] != s[r])break;
			++l;
			--r;
		}
		return l >= r;
	}
	void DFS(vector<vector<string>> &ans, vector<string> &cur, string &s, int idx) {
		int n = s.size();
		if (idx >= n) {
			ans.push_back(cur);
			return;
		}
		for (int i = idx; i < n; ++i) {
			if (IsPal(s, idx, i)) {
				cur.push_back(s.substr(idx, i - idx + 1));
				DFS(ans, cur, s, i + 1);
				cur.pop_back();
			}
		}
	}
	vector<vector<string>> partition(string s) {
		vector<vector<string>> ans;
		vector<string> cur;
		DFS(ans, cur, s, 0);
		return ans;
	}
};

本代码提交AC,用时12MS,比第一种方法慢,还是第一种方法提前求DP更高效。

Leave a Reply

Your email address will not be published. Required fields are marked *