There are n
soldiers standing in a line. Each soldier is assigned a unique rating
value.
You have to form a team of 3 soldiers amongst them under the following rules:
- Choose 3 soldiers with index (
i
,j
,k
) with rating (rating[i]
,rating[j]
,rating[k]
). - A team is valid if: (
rating[i] < rating[j] < rating[k]
) or (rating[i] > rating[j] > rating[k]
) where (0 <= i < j < k < n
).
Return the number of teams you can form given the conditions. (soldiers can be part of multiple teams).
Example 1:
Input: rating = [2,5,3,4,1] Output: 3 Explanation: We can form three teams given the conditions. (2,3,4), (5,4,1), (5,3,1).
Example 2:
Input: rating = [2,1,3] Output: 0 Explanation: We can't form any team given the conditions.
Example 3:
Input: rating = [1,2,3,4] Output: 4
Constraints:
n == rating.length
1 <= n <= 200
1 <= rating[i] <= 10^5
给定一个数组,要求找出这样的升序或者降序的三元组数目。
竞赛阶段,由于n的范围较小,首先尝试暴力O(n^3)解法,代码如下:
class Solution {
public:
int numTeams(vector<int>& rating) {
int ans = 0, n = rating.size();
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
for (int k = j + 1; k < n; ++k) {
if (rating[i] < rating[j] && rating[j] < rating[k])++ans;
else if (rating[i] > rating[j] && rating[j] > rating[k])++ans;
}
}
}
return ans;
}
};
本代码提交AC,用时204MS。
还有更优的O(n^2)的解法。对于每个士兵,统计其左边小于它的数目,和右边大于它的数目,则这两个数相乘即为该士兵能组成的升序数目,类似的可以算到该士兵能组成的降序数目。代码如下:
class Solution {
public:
int numTeams(vector<int>& rating) {
int ans = 0, n = rating.size();
for (int i = 1; i < n - 1; ++i) {
vector<int> less_num(2, 0), greater_num(2, 0);
for (int j = 0; j < n; ++j) {
if (rating[j] < rating[i])++less_num[j < i];
else if (rating[j] > rating[i])++greater_num[j > i];
}
ans += less_num[1] * greater_num[1] + less_num[0] * greater_num[0];
}
return ans;
}
};
本代码提交AC,用时12MS。