230. Kth Smallest Element in a BST
Given a binary search tree, write a function kthSmallest
to find the kth smallest element in it.
Example 1:
Input: root = [3,1,4,null,2], k = 1 3 / \ 1 4 \ 2 Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3 5 / \ 3 6 / \ 2 4 / 1 Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Constraints:
- The number of elements of the BST is between
1
to10^4
. - You may assume
k
is always valid,1 ≤ k ≤ BST's total elements
.
给定一棵二叉搜索树,问树中第k小的元素是哪个。 因为BST的特点是左<=根<=右,所以对树中序遍历之后就得到升序序列,取出第k个元素即可。代码如下:
class Solution {
private:
void inOrder(TreeNode* root, int& k, int& target)
{
if (k < 0)
return;
if (root->left)
inOrder(root->left, k, target);
–k;
if (k == 0)
target = root->val;
if (root->right)
inOrder(root->right, k, target);
}
public:
int kthSmallest(TreeNode* root, int k)
{
int target;
inOrder(root, k, target);
return target;
}
};
本代码提交AC,用时26MS,时间复杂度是O(k)。
Follow up指出如果可以修改节点,怎样才能使得复杂度降低到O(height of tree),可以给每个节点增加一个属性rank:左子树节点个数,该属性的含义就是小于该节点的节点个数,也即当前节点在中序遍历中的位置(rank)。查找的过程就类似二分了,从根节点开始,如果k小于当前节点的rank,说明第k小的数在左子树;如果k大于当前节点的rank,说明第k小的数在右子树;如果k==rank,则当前节点就是第k小的数。这样的查找过程就是不断的在当前节点选择走左子树还是右子树,走过的节点最多是树的高度。
rank属性可以在建BST时完成。