一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
示例 3:
输入:n = 0
输出:1
提示:
0 <= n <= 100
注意:本题与主站 70 题相同:https://leetcode-cn.com/problems/climbing-stairs/
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/qing-wa-tiao-tai-jie-wen-ti-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
对于跳到第n的位置,有两种来源,如果这一跳是2步,则f(n)=f(n-2),如果这一跳是1步,则f(n)=f(n-1),所以总的情况是f(n)=f(n-2)+f(n-1),也就是求斐波那契数列的第n项。
完整代码如下:
class Solution {
public:
int numWays(int n) {
if(n == 0) return 1;
if(n == 1) return 1;
if(n == 2) return 2;
int a = 1, b = 2;
for(int i = 3; i <= n; ++i) {
int tmp = (a + b) % 1000000007;
a = b;
b = tmp;
}
return b;
}
};
本代码提交AC,用时0MS。