Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
Example 1:
Input: matrix = [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ] target = 3 Output: true
Example 2:
Input: matrix = [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ] target = 13 Output: false
给定一个矩阵,每行升序排列,并且下一行的最小值大于上一行的最大值,也就是说如果把矩阵按行展开,就是一个递增序列。问矩阵中是否存在一个数target。 很明显是二分搜索,先把每个行首元素看成一个新的有序数组,进行二分查找,确定所在行midr。然后在这一行进行二分搜索,查找target。 完整代码如下:
class Solution {
public:
bool searchMatrix(vector<vector<int> >& matrix, int target)
{
if (matrix.size() == 0)
return false;
int m = matrix.size(), n = matrix[0].size();
if (n == 0)
return false;
int l = 0, r = m – 1, midr = 0, midc = 0;
while (l <= r) {
midr = (l + r) / 2;
if (target >= matrix[midr][0]) {
if (target <= matrix[midr][n – 1])
break;
l = midr + 1;
}
else
r = midr – 1;
}
l = 0, r = n – 1;
while (l <= r) {
midc = (l + r) / 2;
if (target == matrix[midr][midc])
return true;
if (target > matrix[midr][midc])
l = midc + 1;
else
r = midc – 1;
}
return false;
}
};
本代码提交AC,用时9MS。
二刷。更加规范的代码。首先找到目标数字所在的行,即找每一行开头数字中第一个大于目标数字的行,则前一行即为该数字所在的行,也就是l-1。为什么是l-1而不是r+1呢?这样想象:我们要找比target大的行首元素,如果mid一直小于target的话,则l会一直进行mid+1操作,直到l指向的元素大于target,此时前一行即为target所在行。不过要注意判断前一行是否存在的情况。
class Solution {
public:
bool BinarySearch(vector<int>& vec, int target) {
int l = 0, r = vec.size() - 1;
while (l <= r) {
int mid = l + (r - l) / 2;
if (vec[mid] == target)return true;
if (vec[mid] < target)l = mid + 1;
else r = mid - 1;
}
return false;
}
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m = matrix.size();
if (m == 0)return false;
int n = matrix[0].size();
if (n == 0)return false;
int l = 0, r = m - 1;
while (l <= r) {
int mid = l + (r - l) / 2;
if (matrix[mid][0] == target)return true;
if (matrix[mid][0] < target)l = mid + 1;
else r = mid - 1;
}
if (l < 1)return false;
return BinarySearch(matrix[l - 1], target);
}
};
本代码提交AC,用时16MS。
Pingback: LeetCode Search a 2D Matrix II | bitJoy > code