LeetCode Design Search Autocomplete System

LeetCode Design Search Autocomplete System

Design a search autocomplete system for a search engine. Users may input a sentence (at least one word and end with a special character '#'). For each character they type except '#', you need to return the top 3 historical hot sentences that have prefix the same as the part of sentence already typed. Here are the specific rules:

  1. The hot degree for a sentence is defined as the number of times a user typed the exactly same sentence before.
  2. The returned top 3 hot sentences should be sorted by hot degree (The first is the hottest one). If several sentences have the same degree of hot, you need to use ASCII-code order (smaller one appears first).
  3. If less than 3 hot sentences exist, then just return as many as you can.
  4. When the input is a special character, it means the sentence ends, and in this case, you need to return an empty list.

Your job is to implement the following functions:

The constructor function:

AutocompleteSystem(String[] sentences, int[] times): This is the constructor. The input is historical dataSentences is a string array consists of previously typed sentences. Times is the corresponding times a sentence has been typed. Your system should record these historical data.

Now, the user wants to input a new sentence. The following function will provide the next character the user types:

List<String> input(char c): The input c is the next character typed by the user. The character will only be lower-case letters ('a' to 'z'), blank space (' ') or a special character ('#'). Also, the previously typed sentence should be recorded in your system. The output will be the top 3 historical hot sentences that have prefix the same as the part of sentence already typed.

 

Example:
Operation: AutocompleteSystem(["i love you", "island","ironman", "i love leetcode"], [5,3,2,2])
The system have already tracked down the following sentences and their corresponding times:
"i love you" : 5 times
"island" : 3 times
"ironman" : 2 times
"i love leetcode" : 2 times
Now, the user begins another search:

Operation: input('i')
Output: ["i love you", "island","i love leetcode"]
Explanation:
There are four sentences that have prefix "i". Among them, "ironman" and "i love leetcode" have same hot degree. Since ' ' has ASCII code 32 and 'r' has ASCII code 114, "i love leetcode" should be in front of "ironman". Also we only need to output top 3 hot sentences, so "ironman" will be ignored.

Operation: input(' ')
Output: ["i love you","i love leetcode"]
Explanation:
There are only two sentences that have prefix "i ".

Operation: input('a')
Output: []
Explanation:
There are no sentences that have prefix "i a".

Operation: input('#')
Output: []
Explanation:
The user finished the input, the sentence "i a" should be saved as a historical sentence in system. And the following input will be counted as a new search.

 

Note:

  1. The input sentence will always start with a letter and end with '#', and only one blank space will exist between two words.
  2. The number of complete sentences that to be searched won't exceed 100. The length of each sentence including those in the historical data won't exceed 100.
  3. Please use double-quote instead of single-quote when you write test cases even for a character input.
  4. Please remember to RESET your class variables declared in class AutocompleteSystem, as static/class variables are persisted across multiple test cases. Please see herefor more details.

本题要求实现一个搜索引擎的自动补全功能,正好是我想在我的新闻搜索引擎里实现的功能。首先会给出一些历史数据,就是哪些句子被访问了多少次。现在模拟用户输入,每输入一个字符,给出以输入的所有字符为前缀的历史句子,并且只给出被访频率前3的句子作为自动补全的候选。

Trie树的应用题。Trie树的节点属性包含is_sentence_以该字符结尾是否是一个句子,cnt_该句子的频率。首先把历史数据插入到Trie树中,记录好相应的is_sentence_和cnt_。

用一个成员变量cur_sentence_记录当前输入的字符串前缀。查找的时候,用cur_sentence_在Trie树中找,先找到这个前缀,然后在26个字母+一个空格中递归查找所有孩子节点,把能形成句子的字符串及其频率插入到一个优先队列中。该优先队列先以句子频率排序,如果频率相等,再以字典序排列。这样我们直接从优先队列中取出前三个堆顶句子,就是自动补全的候选。

如果遇到#,说明输入结束,把cur_sentence_及其频率1也插入到Trie树中。注意插入之后树中节点的频率是累加的,即第34行。

注意AutocompleteSystem类初始化的时候需要清空cur_sentence_和Trie树,更多的细节请看代码中的caution。

const int N = 26;
class AutocompleteSystem {

private:
	struct Node {
		bool is_sentence_;
		int cnt_;
		vector<Node*> children_;
		Node() :is_sentence_(false), cnt_(0){
			for (int i = 0; i < N + 1; ++i)children_.push_back(NULL);
		}
	};
	Node *root;
	string cur_sentence_;

	struct Candidate {
		int cnt_;
		string sentence_;
		Candidate(int &cnt, string &sentence) :cnt_(cnt), sentence_(sentence) {};
		bool operator<(const Candidate& cand) const {
			return (cnt_ < cand.cnt_) || (cnt_ == cand.cnt_&&sentence_ > cand.sentence_); // caution
		}
	};

	void AddSentence(const string& sentence, const int& time) {
		Node *cur = root;
		for (const auto& c : sentence) {
			int idx = c - 'a';
			if (c == ' ')idx = N;
			if (cur->children_[idx] == NULL)cur->children_[idx] = new Node();
			cur = cur->children_[idx];
		}
		cur->is_sentence_ = true;
		cur->cnt_ += time; // caution
	}

	void FindSentences(Node *root, string &sentence, priority_queue<Candidate>& candidates) {
		if (root != NULL&&root->is_sentence_)candidates.push(Candidate(root->cnt_, sentence));
		if (root == NULL)return;
		for (int i = 0; i < N + 1; ++i) {
			if (root->children_[i] != NULL) {
				if (i == N)
					sentence.push_back(' ');
				else
					sentence.push_back('a' + i);
				FindSentences(root->children_[i], sentence, candidates);
				sentence.pop_back();
			}
		}
	}

	void StartWith(priority_queue<Candidate>& candidates) {
		Node *cur = root;
		for (const auto& c : cur_sentence_) {
			int idx = c - 'a';
			if (c == ' ')idx = N;
			if (cur->children_[idx] == NULL)return;
			cur = cur->children_[idx];
		}
		string sentence = cur_sentence_;
		FindSentences(cur, sentence, candidates);
	}
	
public:
	AutocompleteSystem(vector<string> sentences, vector<int> times) {
		root = new Node(); // caution
		cur_sentence_ = ""; // caution
		for (int i = 0; i < sentences.size(); ++i)AddSentence(sentences[i], times[i]);
	}

	vector<string> input(char c) {
		if (c == '#') {
			AddSentence(cur_sentence_, 1); // caution
			cur_sentence_ = ""; // caution
			return{};
		}
		else {
			cur_sentence_.push_back(c);
			priority_queue<Candidate> candidates;
			StartWith(candidates);
			if (candidates.empty())return{};
			vector<string> ans;
			while (!candidates.empty()) {
				ans.push_back(candidates.top().sentence_);
				candidates.pop();
				if (ans.size() == 3)break;
			}
			return ans;
		}

	}
};

本代码提交AC,用时329MS。

Leave a Reply

Your email address will not be published. Required fields are marked *