POJ 2965-The Pilots Brothers' refrigerator

POJ 2965-The Pilots Brothers’ refrigerator The Pilots Brothers’ refrigerator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19188 Accepted: 7358 Special Judge Description The game “The Pilots Brothers: following the stripy elephant” has a quest where a player needs to open a refrigerator. There are 16 handles on the refrigerator door. Every handle can be in one of two states: open or closed. The refrigerator is open only when all handles are open. The handles are represented as a matrix 4х4. You can change the state of a handle in any location [i, j] (1 ≤ i, j ≤ 4). However, this also changes states of all handles in row i and all handles in column j. The task is to determine the minimum number of handle switching necessary to open the refrigerator. Input The input contains four lines. Each of the four lines contains four characters describing the initial state of appropriate handles. A symbol “+” means that the handle is in closed state, whereas the symbol “−” means “open”. At least one of the handles is initially closed. Output The first line of the input contains N – the minimum number of switching. The rest N lines describe switching sequence. Each of the lines contains a row number and a column number of the matrix separated by one or more spaces. If there are several solutions, you may give any one of them. Sample Input -+– —- —- -+– Sample Output 6 1 1 1 3 1 4 4 1 4 3 4 4 Source Northeastern Europe 2004, Western Subregion

POJ 1753-Flip Game

POJ 1753-Flip Game Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 31655 Accepted: 13776 Description Flip game is played on a rectangular 4×4 field with two-sided pieces placed on each of its 16 squares. One side of each piece is white and the other one is black and each piece is lying either it’s black or white side up. Each round you flip 3 to 5 pieces, thus changing the color of their upper side from black to white and vice versa. The pieces to be flipped are chosen every round according to the following rules: Choose any one of the 16 pieces. Flip the chosen piece and also all adjacent pieces to the left, to the right, to the top, and to the bottom of the chosen piece (if there are any). Consider the following position as an example: bwbw wwww bbwb bwwb Here “b” denotes pieces lying their black side up and “w” denotes pieces lying their white side up. If we choose to flip the 1st piece from the 3rd row (this choice is shown at the picture), then the field will become: bwbw bwww wwwb wwwb The goal of the game is to flip either all pieces white side up or all pieces black side up. You are to write a program that will search for the minimum number of rounds needed to achieve this goal. Input The input consists of 4 lines with 4 characters “w” or “b” each that denote game field position. Output Write to the output file a single integer number – the minimum number of rounds needed to achieve the goal of the game from the given position. If the goal is initially achieved, then write 0. If it’s impossible to achieve the goal, then write the word “Impossible” (without quotes). Sample Input bwwb bbwb bwwb bwww Sample Output 4 Source Northeastern Europe 2000

hihoCoder 1051-补提交卡

hihoCoder 1051-补提交卡 #1051 : 补提交卡 时间限制:2000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho给自己定了一个宏伟的目标：连续100天每天坚持在hihoCoder上提交一个程序。100天过去了，小Ho查看自己的提交记录发现有N天因为贪玩忘记提交了。于是小Ho软磨硬泡、强忍着小Hi鄙视的眼神从小Hi那里要来M张”补提交卡”。每张”补提交卡”都可以补回一天的提交，将原本没有提交程序的一天变成有提交程序的一天。小Ho想知道通过利用这M张补提交卡，可以使自己的”最长连续提交天数”最多变成多少天。 输入 第一行是一个整数T(1 <= T <= 10)，代表测试数据的组数。 每个测试数据第一行是2个整数N和M(0 <= N, M <= 100)。第二行包含N个整数a1, a2, … aN(1 <= a1 < a2 < … < aN <= 100)，表示第a1, a2, … aN天小Ho没有提交程序。 输出 对于每组数据，输出通过使用补提交卡小Ho的最长连续提交天数最多变成多少。 样例输入 3 5 1 34 77 82 83 84 5 2 10 30 55 56 90 5 10 10 30 55 56 90 样例输出 76 59 100

POJ 2586-Y2K Accounting Bug

POJ 2586-Y2K Accounting Bug Y2K Accounting Bug Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10647 Accepted: 5328 Description Accounting for Computer Machinists (ACM) has sufferred from the Y2K bug and lost some vital data for preparing annual report for MS Inc. All what they remember is that MS Inc. posted a surplus or a deficit each month of 1999 and each month when MS Inc. posted surplus, the amount of surplus was s and each month when MS Inc. posted deficit, the deficit was d. They do not remember which or how many months posted surplus or deficit. MS Inc., unlike other companies, posts their earnings for each consecutive 5 months during a year. ACM knows that each of these 8 postings reported a deficit but they do not know how much. The chief accountant is almost sure that MS Inc. was about to post surplus for the entire year of 1999. Almost but not quite. Write a program, which decides whether MS Inc. suffered a deficit during 1999, or if a surplus for 1999 was possible, what is the maximum amount of surplus that they can post. Input Input is a sequence of lines, each containing two positive integers s and d. Output For each line of input, output one line containing either a single integer giving the amount of surplus for the entire year, or output Deficit if it is impossible. Sample Input 59 237 375 743 200000 849694 2500000 8000000 Sample Output 116 28 300612 Deficit Source Waterloo local 2000.01.29

ACM knows that each of these 8 postings reported a deficit

1 2 3 4 5 6 7 8 9 10 11 12 s s s s d s s s s d s s //每5个月里只有1个月亏损 s s s d d s s s d d s s //每5个月里只有2个月亏损 s s d d d s s d d d s s //每5个月里只有3个月亏损 s d d d d s d d d d s d //每5个月里只有4个月亏损