Given a linked list, determine if it has a cycle in it.
To represent a cycle in the given linked list, we use an integer pos
which represents the position (0-indexed) in the linked list where tail connects to. If pos
is -1
, then there is no cycle in the linked list.
Example 1:
Input: head = [3,2,0,-4], pos = 1 Output: true Explanation: There is a cycle in the linked list, where tail connects to the second node.
Example 2:
Input: head = [1,2], pos = 0 Output: true Explanation: There is a cycle in the linked list, where tail connects to the first node.
Example 3:
Input: head = [1], pos = -1 Output: false Explanation: There is no cycle in the linked list.
Follow up:
Can you solve it using O(1) (i.e. constant) memory?
本题要判断一个链表中是否包含环,注意这里的环可能是局部的环,并不一定是链表头尾相连那种环,比如下图。 解题思路是使用快慢指针,如果链表中有环,则快慢指针一定会在某处相遇,证明请看这篇博客,我试着重述一遍: 首先请看示意图,假设链表起点为X,环的起点为Y,环的总长度为c,快慢指针在环的Z点相遇,YZ=b,XY=a。则有
a+b+mc=s—(1)
a+b+nc=2s—-(2)
(1)和(2)式分别为慢快指针的等式,其中s表示慢指针走过的节点,则快指针走过两倍的s,m和n分别为慢快指针绕圈的圈数,显然n>m。 把(1)代入(2)得到a+b=(n-2m)c。假设真的存在环,则a和c是链表的固有值,是已知量,所以如果能找到m,n,b的一组解,则说明假设成立,真的存在环。 令m=0,n=a,b=ac-a,则这一组解是满足上面的方程(1)和(2)的,也满足n>m。因为环的长度>1,所以b也是大于0的。既然找到一组解,说明假设成立,即存在环。也就是说,我们可以用这种方法判断环是否存在。 完整代码如下:
class Solution {
public:
bool hasCycle(ListNode* head)
{
if (head == NULL || head->next == NULL)
return false;
ListNode *faster = head, *slower = head;
while (faster->next != NULL && faster->next->next != NULL) {
faster = faster->next->next;
slower = slower->next;
if (faster == slower)
return true;
}
return false;
}
};
本代码提交AC,用时9MS。
证明参考:
https://stackoverflow.com/a/6110767/2468587
https://math.stackexchange.com/a/913529/161019
Pingback: LeetCode Linked List Cycle II | bitJoy > code